
Predicted Energy Assessment

Flat 2 222 Otley Road Leeds LS16 5AB Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 16 January 2017 Mark Heptonstall 98.28 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Address: Flat 2, 222 Otley Road, Leeds, LS16 5AB

Located in: England Region: **East Pennines**

UPRN:

16 January 2017 Date of assessment: 16 January 2017 Date of certificate:

New dwelling created by change of use Assessment type:

New dwelling Transaction type: Tenure type: Owner-occupied Related party disclosure: No related party Thermal Mass Parameter: Indicative Value Medium

False Water use <= 125 litres/person/day:

404 PCDF Version:

Flat Dwelling type:

Detachment:

2017 Year Completed:

Floor Location: Floor area:

Storey height: 2.4 m

98.28 m² Floor 0

21.77 m² (fraction 0.222) Living area:

North East Front of dwelling faces:

-(-)	$n \cap n$	ına :	MAGE
\sim	UCIII	IIIU -	types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
Rear	SAP 2012	Windows	double-glazed	Yes	PVC-U
Side	SAP 2012	Windows	double-glazed	Yes	PVC-U
Side	SAP 2012	Windows	double-glazed	Yes	PVC-U
Side	SAP 2012	Windows	double-glazed	Yes	PVC-U
Front	SAP 2012	Windows	double-glazed	Yes	PVC-U

Name:	Gap:	Frame Fa	ctor: g-value:	U-value:	Area:	No. of Openings:
Rear	16mm or more	0.7	0.76	1.6	6.55	1
Side	16mm or more	0.7	0.76	1.6	1	1
Side	16mm or more	0.7	0.76	1.6	1.1	1
Side	16mm or more	0.7	0.76	1.6	0.55	1
Front	16mm or more	0.7	0.76	1.6	5.95	1

Name:	Type-Name:	Location:	Orient:	Width:	Height:
Rear		Proposed EW	South West	0	0
Side		Proposed EW	North West	0	0
Side		Existing EW	North West	0	0
Side		Existing EW	South East	0	0
Front		Existing EW	North East	0	0

Average or unknown Overshading:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>ts</u>						
Existing EW	64.32	7.6	56.72	0.3	0	False	N/A
Proposed EW	35.49	7.55	27.94	0.28	0	False	N/A
Roof	20.5	0	20.5	0.16	0		N/A
Internal Flement	2						

SAP Input

Party Elements

Thermal bridges:	
Thermal bridges:	No information on thermal bridging (y=0.15) (y =0.15)
Ventilation:	
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of passive stacks: Number of sides sheltered: Pressure test: Main heating system:	No (Assumed) Natural ventilation (extract fans) 0 0 3 0 2 15
Main heating system:	Boiler systems with radiators or underfloor heating
	Gas boilers and oil boilers Fuel: mains gas Info Source: Boiler Database Database: (rev 404, product index 017985) Efficiency: Winter 87.3 % Summer: 90.5 Brand name: Ideal Model: LOGIC + COMBI C24 Model qualifier: (Combi boiler) Systems with radiators Central heating pump: 2013 or later Design flow temperature: Design flow temperature<=35°C Boiler interlock: Yes
Main heating Control:	
Main heating Control:	Programmer, room thermostat and TRVs Control code: 2106
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home:	Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No None No

			User D	otaile: -						
Assessor Name:	Mark Heptonstall			Strom:	a Num	her:		STRC	0004925	
Software Name:	Stroma FSAP 20			Softwa					on: 1.0.4.5	
				Address		CICIII				
Address :	Flat 2, 222 Otley R									
1. Overall dwelling dime										
			Area	a(m²)		Av. He	ight(m)		Volume(m	3)
Ground floor			9	8.28	(1a) x	2	2.4	(2a) =	235.87	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1	e)+(1r	n) 9	8.28	(4)			-		
Dwelling volume					(3a)+(3b)+(3c)+(3c	d)+(3e)+	.(3n) =	235.87	(5)
2. Ventilation rate:										
		secondar heating	у	other		total			m³ per hou	ır
Number of chimneys	0 +	0	+	0] = [0	X 4	40 =	0	(6a)
Number of open flues	0 +	0	ī + F	0	j = F	0	x	20 =	0	(6b)
Number of intermittent fa	ans				」	3	x ·	10 =	30	(7a)
Number of passive vents	3				F	0	x	10 =	0	(7b)
·					Ļ			40 =		=
Number of flueless gas f	iles				L	0	^	10 –	0	(7c)
								Air cl	hanges per ho	our
Infiltration due to chimne	eys, flues and fans = ((6a)+(6b)+(7	'a)+(7b)+(7c) =	Г	30		÷ (5) =	0.13	(8)
If a pressurisation test has l					ontinue fr			()	00	`
Number of storeys in t	he dwelling (ns)								0	(9)
Additional infiltration							[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0					•	uction			0	(11)
if both types of wall are p deducting areas of openi	oresent, use the value corre ings): if equal user 0.35	esponding to	the great	er wall are	a (after					
If suspended wooden	• / .	aled) or 0.	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, er	nter 0.05, else enter 0								0	(13)
Percentage of window	s and doors draught	stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate				(8) + (10)	+ (11) + (1	12) + (13)	+ (15) =		0	(16)
Air permeability value,			•	•	•	etre of e	envelope	area	15	(17)
If based on air permeabi	•								0.88	(18)
Air permeability value applie		as been don	ne or a deg	gree air pe	meability	is being u	sed			¬
Number of sides shelters Shelter factor	ea			(20) = 1 -	0.075 x (1	19)1 =			2	(19) (20)
Infiltration rate incorpora	ting shelter factor			(21) = (18)		/,1			0.85	(21)
Infiltration rate modified	•	ed.		() (-)	(- /				0.75	(21)
Jan Feb	Mar Apr May	1	Jul	Aug	Sep	Oct	Nov	Dec	1	
Monthly average wind sp				1 3		1	1		_	
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	1	
		I	l	I		I	<u> </u>	I	1	
Wind Factor $(22a)m = (2a)m =$	'	1	T .			1		1	1	
(22a)m= 1.27 1.25	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjusted infiltration rate (allowing for shelter a	nd wind speed) -	- (21a) v	(22a)m					
0.95 0.93 0.91 0.82 0.8	0.71 0.71	0.69	0.75	0.8	0.84	0.88	1	
Calculate effective air change rate for the app	1 1 1	1					l	
If mechanical ventilation:							0	(23a)
If exhaust air heat pump using Appendix N, (23b) = (23b)	3a) × Fmv (equation (N5)) , other	rwise (23b) = (23a)			0	(23b)
If balanced with heat recovery: efficiency in % allowing	for in-use factor (fro	m Table 4h) =				0	(23c)
a) If balanced mechanical ventilation with h	eat recovery (MV	HR) (24a	m = (22)	2b)m + (23b) × [1 – (23c)	÷ 100]	
(24a)m= 0 0 0 0 0	0 0	0	0	0	0	0		(24a)
b) If balanced mechanical ventilation withou	ıt heat recovery (MV) (24b)m = (22	2b)m + (2	23b)			
(24b)m= 0 0 0 0 0	0 0	0	0	0	0	0		(24b)
c) If whole house extract ventilation or posit if $(22b)m < 0.5 \times (23b)$, then $(24c) = (23b)$	•			5 × (23b	o)			
(24c)m= 0 0 0 0 0	0 0	0	0	0	0	0		(24c)
d) If natural ventilation or whole house positif (22b)m = 1, then (24d)m = (22b)m oth	•			0.51		!	•	
(24d)m= 0.95 0.93 0.92 0.84 0.82	0.75 0.75	0.74	0.78	0.82	0.85	0.88]	(24d)
Effective air change rate - enter (24a) or (24	4b) or (24c) or (24	4d) in box	(25)	<u> </u>	<u> </u>		ı	
(25)m= 0.95 0.93 0.92 0.84 0.82	0.75 0.75	0.74	0.78	0.82	0.85	0.88]	(25)
						ı		
3. Heat losses and heat loss parameter:	Not Area	امدالا	10	AXU		le volue	Δ Δ	X k
ELEMENT Gross Openings area (m²) m²	Net Area A ,m²	U-valı W/m2	K .	(W/I		k-value kJ/m²-l		/K
Windows Type 1		1/[1/(1.6)+		9.85	ᆗ			(27)
Windows Type 2	1 x	1/[1/(1.6)+	0.04] =	1.5	_			(27)
Windows Type 3	1.1 X	1/[1/(1.6)+	0.04] =	1.65				(27)
Windows Type 4	0.55 x	1/[1/(1.6)+	0.04] =	0.83				(27)
Windows Type 5	5.95 x	1/[1/(1.6)+	0.04] =	8.95				(27)
Walls Type1 64.32 7.6	56.72 ×	0.3	= [17.02				(29)
Walls Type2 35.49 7.55	27.94 ×	0.28	=	7.82				(29)
Roof 20.5 0	20.5 X	0.16	=	3.28				(30)
Total area of elements, m ²	120.31							(31)
* for windows and roof windows, use effective window U-	value calculated usin	g formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	1 3.2	
** include the areas on both sides of internal walls and pa	artitions						_	_
Fabric heat loss, W/K = S (A x U)		(26)(30)					50.9	(33)
Heat capacity $Cm = S(A \times k)$			***	.(30) + (32	, , ,	(32e) =	0	(34)
Thermal mass parameter (TMP = Cm ÷ TFA)				tive Value			250	(35)
For design assessments where the details of the construction can be used instead of a detailed calculation.	·	recisely the	indicative	values of	TMP in Ta	able 1f		_
Thermal bridges: S (L x Y) calculated using A							18.05	(36)
if details of thermal bridging are not known (36) = $0.15 x$. Total fabric heat loss	(31)		(33) +	(36) =			60.05	(37)
Ventilation heat loss calculated monthly				$= 0.33 \times ($	25)m x (5)	1	68.95	(37)
Jan Feb Mar Apr May	Jun Jul	Aug	Sep	Oct	Nov	Dec]	
(38)m= 74.09 72.73 71.39 65.1 63.92	58.45 58.45	57.43	60.56	63.92	66.3	68.79		(38)
Heat transfer coefficient, W/K	1 3 3 3 3 1 3 3 1 3	1		= (37) + (37)	<u> </u>	I	I	. ,
(39)m= 143.04 141.67 140.33 134.05 132.87	127.39 127.39	126.38	129.5	132.87	135.25	137.74]	
		1 120.00		Average =	L		134. ₽ 4age	2 (39)
Stroma FSAP 2012 Version: 1.0.4.5 (SAP 9.92) - http://w	vv vv. Su Utila.CUIII		•		11.1.(55)1		rage	<u>~ u</u> r ə ′

Heat loss para	ameter (I	HLP), W/	m²K					(40)m	= (39)m ÷	- (4)			
(40)m= 1.46	1.44	1.43	1.36	1.35	1.3	1.3	1.29	1.32	1.35	1.38	1.4		
						ı	ı	,	Average =	Sum(40) ₁ .	12 /12=	1.36	(40)
Number of day		nth (Tab	le 1a)		ı			ı	1	i			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(44)
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water hea	ting ene	rgy requi	rement:								kWh/ye	ar:	
Assumed occurring TFA > 13.1 if TFA £ 13.1	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13.		72		(42)
Annual average Reduce the annual not more that 125	al average	hot water	usage by	5% if the α	lwelling is	designed t			se target o		4.08		(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage i	in litres pe	r day for ea		Vd,m = fa	ctor from	Table 1c x							
(44)m= 114.48	110.32	106.16	101.99	97.83	93.67	93.67	97.83	101.99	106.16	110.32	114.48		
				- mtl-l	400 \/-/		T / 200			m(44) ₁₁₂ =		1248.91	(44)
Energy content of													
(45)m= 169.78	148.49	153.22	133.59	128.18	110.61	102.49	117.61	119.02	138.7	151.41	164.42	1007.51	(45)
If instantaneous v	vater heati	ing at point	of use (no	hot water	storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =		1637.51	(45)
(46)m= 25.47	22.27	22.98	20.04	19.23	16.59	15.37	17.64	17.85	20.81	22.71	24.66		(46)
Water storage	loss:							ļ		ļ.			
Storage volum	ne (litres)) includin	g any s	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	-			-			, ,						
Otherwise if no Water storage		hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
a) If manufact		eclared l	oss facto	or is kno	wn (kWł	n/dav):					0		(48)
Temperature f					(, , .					0		(49)
Energy lost fro				ear			(48) x (49)) =			0		(50)
b) If manufact		_	-		or is not	known:	. , , , ,						()
Hot water stor	•			e 2 (kW	h/litre/da	ay)					0		(51)
If community he Volume factor	_		on 4.3										(52)
Temperature f			2b							—	0		(53)
Energy lost fro				ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or		_	,				, , , ,	, , , ,	,		0		(55)
Water storage	loss cal	culated f	or each	month			((56)m = ((55) × (41)	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	хH	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	t loss (ar	nnual) fro	m Table	3							0		(58)
Primary circuit	,	•			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by	/ factor f	rom Tab	e H5 if t	here is s	olar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)

Cambilaaa aalad				(04)	(00)	005 (44	\							
Combi loss calcul				,	·			40	44.00	45.54	T 44.40	15.04	1	(61)
` '	1.19 45.		44.07	45.51	43.99	45.43	45.		44.03	45.54	44.12	45.61	(50)	(61)
Total heat require		_					`			` 	`	`	· (59)m + (61)m 1	(60)
` '	39.68 198		177.66	173.68	154.6	147.93	163		163.05	184.25	195.52	210.03		(62)
Solar DHW input calc	_									r contribu	tion to wate	er heating)		
(add additional lin							i 		<u> </u>				1	(63)
(63)m= 0)	0	0	0	0	C	,	0	0	0	0]	(63)
Output from wate		1				1					T	T	1	
(64)m= 215.4 18	39.68 198	8.8	177.66	173.68	154.6	147.93	163		163.05	184.25	195.52	210.03	0470.00	7(64)
					_ ,	_ (1-)					er (annual) ₁		2173.69	(64)
Heat gains from v		<u> </u>					<u> </u>				 	1	1] 1	(05)
` '	9.67 62.		55.43	54	47.78	45.44	50.		50.58	57.5	61.37	66.07]	(65)
include (57)m ii	n calculat	ion o	of (65)m	only if c	ylinder	is in the	dwell	ling	or hot w	ater is f	rom com	munity h	neating	
5. Internal gains	s (see Tab	ole 5	and 5a)):										
Metabolic gains (Table 5),	Watt	S										-	
Jan	Feb M	1ar	Apr	May	Jun	Jul	Α	ug	Sep	Oct	Nov	Dec		
(66)m= 163.38 16	3.38 163	3.38	163.38	163.38	163.38	163.38	163	.38	163.38	163.38	163.38	163.38]	(66)
Lighting gains (ca	lculated i	n Ap	pendix l	L, equat	ion L9	or L9a), a	lso s	see -	Table 5				_	
(67)m= 59.39 5.	2.75 42	2.9	32.48	24.28	20.5	22.15	28.	79	38.64	49.06	57.26	61.04		(67)
Appliances gains	(calculate	ed in	Append	dix L, eq	uation	L13 or L1	3a),	also	see Ta	ble 5			_	
(68)m= 378.38 38	32.31 372	2.42	351.35	324.76	299.77	283.08	279	.15	289.04	310.11	336.7	361.69]	(68)
Cooking gains (ca	alculated i	in Ap	pendix	L, equat	ion L1	5 or L15a), als	o se	ee Table	5	•		-	
(69)m= 54.06 5	4.06 54.	.06	54.06	54.06	54.06	54.06	54.	06	54.06	54.06	54.06	54.06]	(69)
Pumps and fans	gains (Tal	ble 5	a)						•	•	•	•	•	
(70)m= 3	3 3	3	3	3	3	3	3	3	3	3	3	3]	(70)
Losses e.g. evap	oration (n	egati	ive valu	es) (Tab	le 5)				Į.	Į.	•	!		
	08.92 -108		-108.92	-108.92	-108.92	2 -108.92	-108	3.92	-108.92	-108.92	-108.92	-108.92	1	(71)
Water heating ga	ins (Table	<u>-</u>					!		Į.	Į.			•	
	88.8 83.	 _	76.99	72.58	66.35	61.07	67.	84	70.25	77.29	85.24	88.81	1	(72)
Total internal ga	ins =				(6	L 6)m + (67)m	า + (68	3)m +	L ⊦ (69)m + ((70)m + (7	71)m + (72))m	ı	
<u>_</u> _	35.38 610	0.63	572.34	533.14	498.14	-	487	_	509.46	547.98	590.72	623.06	1	(73)
6. Solar gains:														
Solar gains are calcu	ulated using	solar	flux from	Table 6a	and asso	ciated equa	ations	to co	nvert to th	e applica	ble orientat	tion.		
Orientation: Acc	ess Facto	or	Area		F	lux			g_		FF		Gains	
Tab	le 6d		m²		Т	able 6a		Т	able 6b	Т	able 6c		(W)	
Northeast _{0.9x}	0.77	X	5.9)5	x	11.28	x		0.76	x	0.7	=	24.75	(75)
Northeast _{0.9x}	0.77	X	5.9	95	x	22.97	x		0.76	x	0.7		50.38	(75)
Northeast _{0.9x}	0.77	X	5.9)5	x	41.38	X		0.76	x	0.7	= =	90.77	(75)
Northeast _{0.9x}	0.77	X	5.9		x	67.96	X	T	0.76	x	0.7	=	149.07	(75)
Northeast _{0.9x}	0.77) x	5.9		x	91.35)] x		0.76	- x	0.7		200.38	(75)
L		_					_	Ь						_

Northcoat a c		7		1		1		ı		1		7(75)
Northeast 0.9x	0.77	X	5.95	X	97.38	X	0.76	X	0.7] =	213.62	(75)
Northeast _{0.9x}	0.77	X	5.95	X	91.1	X	0.76	X	0.7] =	199.84	(75)
Northeast 0.9x	0.77	X	5.95	X	72.63	X	0.76	X	0.7] =	159.32	(75)
Northeast _{0.9x}	0.77	X	5.95	X	50.42	X	0.76	X	0.7] =	110.6	(75)
Northeast _{0.9x}	0.77	X	5.95	X	28.07	X	0.76	X	0.7] =	61.57	(75)
Northeast _{0.9x}	0.77	X	5.95	X	14.2	X	0.76	X	0.7] =	31.14	(75)
Northeast 0.9x	0.77	X	5.95	X	9.21	X	0.76	X	0.7	=	20.21	(75)
Southeast 0.9x	0.77	X	0.55	X	36.79	X	0.76	X	0.7	=	7.46	(77)
Southeast 0.9x	0.77	X	0.55	X	62.67	X	0.76	X	0.7	=	12.71	(77)
Southeast 0.9x	0.77	X	0.55	X	85.75	X	0.76	X	0.7	=	17.39	(77)
Southeast 0.9x	0.77	X	0.55	X	106.25	X	0.76	X	0.7	=	21.54	(77)
Southeast 0.9x	0.77	X	0.55	X	119.01	X	0.76	X	0.7	=	24.13	(77)
Southeast 0.9x	0.77	X	0.55	X	118.15	Х	0.76	X	0.7	=	23.96	(77)
Southeast _{0.9x}	0.77	X	0.55	X	113.91	X	0.76	X	0.7	=	23.1	(77)
Southeast 0.9x	0.77	X	0.55	X	104.39	X	0.76	x	0.7	=	21.17	(77)
Southeast 0.9x	0.77	X	0.55	X	92.85	X	0.76	X	0.7	=	18.83	(77)
Southeast 0.9x	0.77	X	0.55	X	69.27	X	0.76	X	0.7	=	14.05	(77)
Southeast 0.9x	0.77	X	0.55	X	44.07	X	0.76	X	0.7	=	8.94	(77)
Southeast _{0.9x}	0.77	x	0.55	x	31.49	x	0.76	X	0.7	=	6.38	(77)
Southwest _{0.9x}	0.77	X	6.55	X	36.79		0.76	X	0.7	=	88.85	(79)
Southwest _{0.9x}	0.77	X	6.55	X	62.67]	0.76	X	0.7	=	151.35	(79)
Southwest _{0.9x}	0.77	x	6.55	x	85.75]	0.76	x	0.7	=	207.08	(79)
Southwest _{0.9x}	0.77	x	6.55	X	106.25		0.76	x	0.7	=	256.58	(79)
Southwest _{0.9x}	0.77	X	6.55	X	119.01		0.76	x	0.7	=	287.39	(79)
Southwest _{0.9x}	0.77	x	6.55	x	118.15]	0.76	x	0.7	=	285.31	(79)
Southwest _{0.9x}	0.77	x	6.55	x	113.91]	0.76	X	0.7	=	275.07	(79)
Southwest _{0.9x}	0.77	x	6.55	x	104.39		0.76	x	0.7	=	252.08	(79)
Southwest _{0.9x}	0.77	x	6.55	x	92.85		0.76	X	0.7	=	224.22	(79)
Southwest _{0.9x}	0.77	x	6.55	x	69.27]	0.76	X	0.7	=	167.27	(79)
Southwest _{0.9x}	0.77	x	6.55	x	44.07]	0.76	x	0.7	=	106.42	(79)
Southwest _{0.9x}	0.77	x	6.55	x	31.49	Ì	0.76	x	0.7	=	76.04	(79)
Northwest _{0.9x}	0.77	x	1	x	11.28	x	0.76	x	0.7	=	4.16	(81)
Northwest 0.9x	0.77	x	1.1	x	11.28	x	0.76	x	0.7	=	4.58	(81)
Northwest 0.9x	0.77	x	1	x	22.97	x	0.76	x	0.7	=	8.47	(81)
Northwest _{0.9x}	0.77	х	1.1	x	22.97	х	0.76	х	0.7	=	9.31	(81)
Northwest _{0.9x}	0.77	x	1	x	41.38	x	0.76	х	0.7	j =	15.26	(81)
Northwest _{0.9x}	0.77	X	1.1	x	41.38	x	0.76	x	0.7	j =	16.78	(81)
Northwest _{0.9x}	0.77	×	1	x	67.96	x	0.76	x	0.7	j =	25.05	(81)
Northwest _{0.9x}	0.77	×	1.1	×	67.96	x	0.76	x	0.7] =	27.56	(81)
Northwest _{0.9x}	0.77	×	1	×	91.35	x	0.76	x	0.7] =	33.68	(81)
Northwest _{0.9x}	0.77	×	1.1	×	91.35	x	0.76	x	0.7] =	37.04	(81)
		_						•				_

Northwe	est _{0.9x}	0.77	X	1		x	97.38	X	0.76	X	0.7	=	35.9	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	97.38	×	0.76	x	0.7		39.49	(81)
Northwe	est _{0.9x}	0.77	X	1		x	91.1	×	0.76	х	0.7		33.59	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	91.1	×	0.76	х	0.7	=	36.95	(81)
Northwe	est _{0.9x}	0.77	X	1		x	72.63	×	0.76	x	0.7		26.78	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	72.63	×	0.76	x	0.7		29.45	(81)
Northwe	est _{0.9x}	0.77	X	1		x	50.42	×	0.76	x	0.7		18.59	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	50.42	×	0.76	x	0.7		20.45	(81)
Northwe	est _{0.9x}	0.77	X	1		x	28.07	×	0.76	x	0.7		10.35	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	28.07	×	0.76	x	0.7	=	11.38	(81)
Northwe	est _{0.9x}	0.77	X	1		x	14.2	X	0.76	х	0.7	=	5.23	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	14.2	×	0.76	х	0.7	=	5.76	(81)
Northwe	est _{0.9x}	0.77	X	1		x	9.21	×	0.76	Х	0.7	=	3.4	(81)
Northwe	est _{0.9x}	0.77	X	1.	1	x	9.21	X	0.76	х	0.7	=	3.74	(81)
	_													
Solar g	ains in	watts, ca	alculated	for eac	h month			(83)n	n = Sum(74)n	n(82)m			-	
(83)m=	129.8	232.22	347.27	479.81	582.62	<u> </u>	98.29 568.5		392.69	264.61	157.49	109.77		(83)
Total g	ains – ir	nternal a	nd solar		<u> </u>	`	33)m , watts						Ī	
(84)m=	770.3	867.59	957.9	1052.15	1115.76	10	96.43 1046.3	86 970	5.1 902.15	5 812.59	748.21	732.83		(84)
7. Me	an inter	nal temp	erature	(heating	season)								
Temp	erature	during h	eating p	eriods ir	n the livi	ng a	area from T	able 9	Th1 (°C)				21	(85)
		-	٠.			•		ub.0 0	, 1111 (0)					(33)
Utilisa	ation fac	_				_	ee Table 9a							
Utilisa	ation fac Jan	_				ı (se)	ug Ser	Oct	Nov	Dec		(~~)
Utilisa (86)m=		tor for ga	ains for	iving are	ea, h1,m	s (se	ee Table 9a)	ug Sep	Oct 0.96	Nov 0.99	Dec 1		(86)
(86)m=	Jan 0.99	tor for ga Feb	Mar 0.98	iving are Apr 0.94	ea, h1,m May 0.85	(Se	ee Table 9a Jun Jul) A	ug Sep 57 0.81	+	+			
(86)m=	Jan 0.99 interna	tor for ga Feb	Mar 0.98	iving are Apr 0.94	ea, h1,m May 0.85	(Se	ee Table 9a Jun Jul 0.68 0.52	0.9 7 in 7	ug Sep 57 0.81 able 9c)	0.96	+			
(86)m= Mean (87)m=	Jan 0.99 internal 19.53	Feb 0.99 tempera	Mar 0.98 ature in	Apr 0.94 living are	ea, h1,m May 0.85 ea T1 (fo	ollo	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99	0.9 0.9 0 7 in 7	ug Sep 57 0.81 Table 9c) 98 20.85	0.96	0.99	1		(86)
(86)m= Mean (87)m=	Jan 0.99 internal 19.53	Feb 0.99 tempera	Mar 0.98 ature in	Apr 0.94 living are	ea, h1,m May 0.85 ea T1 (fo	ollo dw	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to) A 0.9 7 in 7 20.	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C)	0.96	0.99	1		(86)
(86)m= Mean (87)m= Temp (88)m=	Jan 0.99 internal 19.53 erature 19.72	tor for garage for	Mar 0.98 ature in 20 eating p	Apr 0.94 living are 20.42 eriods ir	ea, h1,m May 0.85 ea T1 (for 20.74 rest of 19.8	(Secollo dw 1	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84	0.9 7 in 3 20.7 Table 9 19.	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C)	0.96	0.99	19.55		(86)
(86)m= Mean (87)m= Temp (88)m= Utilisa	Jan 0.99 internal 19.53 erature 19.72 ation fac	tor for garage for	Mar 0.98 ature in 20 eating p 19.74 ains for	Apr 0.94 living are 20.42 eriods ir 19.79	May 0.85 ea T1 (for 20.74 n rest of 19.8 welling,	ollo dw h2,	Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from	0.9 7 in 3 20.7 Table 9 19.	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83	0.96	0.99	19.55		(86)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m=	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99	tor for ga Feb 0.99 tempera 19.71 during h 19.73 tor for ga 0.99	Mar 0.98 ature in 20 eating p 19.74 ains for 0.97	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8	(second second second	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39	A 0.9 7 in 3 20.7 Table 4 19.8 le 9a) 0.4	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83	0.96	0.99 19.95	19.55		(86) (87) (88)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal	tempera 19.71 during h 19.73 tor for ga 0.99	Mar 0.98 ature in 20 eating p 19.74 ains for 0.97 ature in	Apr 0.94 living are 20.42 eriods ir 19.79 rest of do 0.92 the rest	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell	dw h2,	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s	A 0.9 7 in 1 20. Table 9 19. le 9a) 0.4 steps 3	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 14 0.73 15 to 7 in Ta	0.96 20.44) 19.8 0.94 ble 9c)	0.99 19.95 19.78 0.98	1 19.55 19.76 0.99		(86) (87) (88) (89)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m=	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99	tor for ga Feb 0.99 tempera 19.71 during h 19.73 tor for ga 0.99	Mar 0.98 ature in 20 eating p 19.74 ains for 0.97	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8	dw h2,	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39	A 0.9 7 in 1 20. Table 9 19. le 9a) 0.4 steps 3	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 14 0.73 15 to 7 in Ta	0.96 20.44) 19.8 0.94 ble 9c) 19.38	0.99 19.95 19.78 0.98	1 19.55 19.76 0.99		(86) (87) (88) (89)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal	tempera 19.71 during h 19.73 tor for ga 0.99	Mar 0.98 ature in 20 eating p 19.74 ains for 0.97 ature in	Apr 0.94 living are 20.42 eriods ir 19.79 rest of do 0.92 the rest	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell	dw h2,	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s	A 0.9 7 in 1 20. Table 9 19. le 9a) 0.4 steps 3	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 14 0.73 15 to 7 in Ta	0.96 20.44) 19.8 0.94 ble 9c) 19.38	0.99 19.95 19.78 0.98	1 19.55 19.76 0.99	0.22	(86) (87) (88) (89)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m=	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42	temperator for game temper	eating p 19.74 ains for 0.97 ature in 18.9	Apr 0.94 living are 20.42 eriods ir 19.79 rest of do 0.92 the rest 19.34 r the wh	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63	dw 1 h2, cling 1	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84	A 0.9 7 in 1 20. Table 9 1 9. Steps 3 19. Table 1 19.	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Tall 85 19.75 - fLA) × T	0.96 20.44) 19.8 0.94 ble 9c) 19.38 fLA = Liv	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4	1 19.55 19.76 0.99 18.47		(86) (87) (88) (89) (90) (91)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m= Mean (92)m=	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66	tor for garage feet of the second sec	eating positive in 18.9 ature in 20 eating positive in 18.9 ature in 18.9	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88	dw 1 h2, cing 1	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09	A 0.9 7 in 7 20.7 Table 9 19.	ug Sep 57 0.81 Fable 9c) 98 20.85 9, Th2 (°C) 85 19.83 14 0.73 14 0.73 15 to 7 in Ta 18 19.75 - fLA) × T 1 19.99	0.96 20.44) 19.8 0.94 ble 9c) 19.38 fLA = Liv	0.99 19.95 19.78 0.98	1 19.55 19.76 0.99		(86) (87) (88) (89)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m= Mean (92)m= Apply	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66 adjustn	tor for garage for garage for for garage for gara	eating p 19.74 ains for 0.97 ature in 18.9 ature (for 19.14 ne mean	Apr 0.94 living are 20.42 eriods ir 19.79 rest of do 0.92 the rest 19.34 r the wh 19.58 internal	may 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwell 19.88 I temper	dw 1 h2, cling 1 llling 2 atu	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09 re from Tab	A 0.9 7 in 7 20. Table 9 19. Steps 3 19. Steps 3 19. Steps 3 19. Steps 4 6, old 4 6,	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Tall 85 19.75 - fLA) × T 1 19.99 where app	0.96 20.44) 19.8 0.94 ble 9c) 19.38 fLA = Liv	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4	1 19.55 19.76 0.99 18.47 4) =		(86) (87) (88) (89) (90) (91)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m= Apply (93)m=	Jan 0.99 interna 19.53 erature 19.72 ation fac 0.99 interna 18.42 interna 18.66 adjustn 18.66	tor for garage feet of temperature for garage feet feet of temperature feet feet feet feet feet feet feet fe	eating p 19.74 eating for 0.97 ature in 18.9 eature (for 19.14 ne mear 19.14	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh 19.58 internal	ea, h1,m May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88	dw 1 h2, cling 1 llling 2 atu	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09	A 0.9 7 in 7 20. Table 9 19. 19. 19. 19. 19. 19. 19. 19. 19. 1	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Tall 85 19.75 - fLA) × T 1 19.99 where app	0.96 20.44) 19.8 0.94 ble 9c) 19.38 fLA = Liv	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4	1 19.55 19.76 0.99 18.47		(86) (87) (88) (89) (90) (91)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m= Mean (92)m= Apply (93)m= 8. Spa	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66 adjustn 18.66 ace hea	tor for garage for for ga	eating p 19.74 eatins for 0.97 eature in 0.97 eature in 18.9 eature (for 19.14 emean 19.14 direment	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh 19.58 internal 19.58	May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88 temper 19.88	dw 1 h2, (sing 1 llling 2 ratu 2	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09 re from Tab 0.07 20.09	A 0.9 7 in 7 20. Table 9 20. Steps 3 19. Steps 3 19. Steps 3 19. Steps 3 20. S	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Tall 85 19.75 - fLA) × T 1 19.99 where app 1 19.99	0.96 20.44) 19.8 0.94 ble 9c) 19.38 fLA = Liv	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4) 19.12	1 19.55 19.76 0.99 18.47 4) = 18.71	0.22	(86) (87) (88) (89) (90) (91)
(86)m= [Mean (87)m= [Temp (88)m= [Utilisa (89)m= [Mean (90)m= [Mean (92)m= [Apply (93)m= [8. Spa Set Ti	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66 adjustn 18.66 acce head to the r	tor for ga Feb 0.99 tempera 19.71 during h 19.73 tor for ga 0.99 tempera 18.6 tempera 18.85 hent to th 18.85 ting required	eating p 19.74 ains for 0.97 ature in 18.9 ature (for 19.14 ne mean 19.14 uirement ernal ter	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh 19.58 internal 19.58	May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88 temper 19.88	dw 1 h2, (sing 1 llling 2 ratu 2	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09 re from Tab	A 0.9 7 in 7 20. Table 9 20. Steps 3 19. Steps 3 19. Steps 3 19. Steps 3 20. S	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Tall 85 19.75 - fLA) × T 1 19.99 where app 1 19.99	0.96 20.44) 19.8 0.94 ble 9c) 19.38 fLA = Liv	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4) 19.12	1 19.55 19.76 0.99 18.47 4) = 18.71	0.22	(86) (87) (88) (89) (90) (91)
(86)m= [Mean (87)m= [Temp (88)m= [Utilisa (89)m= [Mean (90)m= [Mean (92)m= [Apply (93)m= [8. Spa Set Ti	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66 adjustn 18.66 acce head to the r	tor for garage for fo	eating p 19.74 ains for 0.97 ature in 18.9 ature (for 19.14 ne mean 19.14 uirement ernal ter	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh 19.58 internal 19.58	May 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88 temper 19.88	dw 1 h2, (sing 1 lling 2 attu 2 med	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09 re from Tab 0.07 20.09	A 0.9 7 in 7 20. Table 9 19. 10 20. Steps 3 19. 11 + (1 20. 12 20. 13 20. 14 20. 15 30. 16 4e, 17 20. 17 30. 18 20.	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Tall 85 19.75 - fLA) × T 1 19.99 where app 1 19.99	0.96 20.44 19.8 0.94 ble 9c) 19.38 fLA = Liv 2 19.61 propriate 19.61	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4 19.12 19.12	1 19.55 19.76 0.99 18.47 4) = 18.71	0.22	(86) (87) (88) (89) (90) (91)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m= Mean (92)m= Apply (93)m= 8. Spa Set Ti the uti	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66 adjustn 18.66 acce head to the rillisation Jan	tor for garage for for for garage for for garage for for garage for for garage for for for garage for for garage for for for garage for garage for for garage for gara	eating p 19.74 eatins for 0.97 eating p 19.74 eatins for 0.97 eature in 18.9 eature (for 19.14 emean 19.14 emean emean for gains Mar	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh 19.58 internal 19.58 mperaturusing Ta	may 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88 temper 19.88 re obtain able 9a	dw 1 h2, (sing 1 lling 2 attu 2 med	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09 re from Tab 0.07 20.09 at step 11 of	A 0.9 7 in 7 20. Table 9 19. 10 20. Steps 3 19. 11 + (1 20. 12 20. 13 20. 14 20. 15 30. 16 4e, 17 20. 17 30. 18 20.	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 6 to 7 in Ta 85 19.75 - fLA) × T .1 19.99 where app .1 19.99	0.96 20.44 19.8 0.94 ble 9c) 19.38 fLA = Liv 2 19.61 propriate 19.61	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4 19.12 19.12	1 19.55 19.76 0.99 18.47 4) = 18.71 18.71	0.22	(86) (87) (88) (89) (90) (91)
(86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m= Mean (92)m= Apply (93)m= 8. Spa Set Ti the uti	Jan 0.99 internal 19.53 erature 19.72 ation fac 0.99 internal 18.42 internal 18.66 adjustn 18.66 acce head to the rillisation Jan	tor for ga Feb 0.99 tempera 19.71 during h 19.73 tor for ga 0.99 tempera 18.6 tempera 18.85 nent to th 18.85 ting required to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for for ga tempera 18.85 nent to the second for ga tempera 18.85 nent to the	eating p 19.74 eatins for 0.97 eating p 19.74 eatins for 0.97 eature in 18.9 eature (for 19.14 emean 19.14 emean emean for gains Mar	Apr 0.94 living are 20.42 eriods ir 19.79 rest of dr 0.92 the rest 19.34 r the wh 19.58 internal 19.58 mperaturusing Ta	may 0.85 ea T1 (for 20.74 n rest of 19.8 welling, 0.8 of dwell 19.63 ole dwe 19.88 temper 19.88 re obtain able 9a	dw 1 h2, (sing 1 lling 2 attu 2 med	ee Table 9a Jun Jul 0.68 0.52 w steps 3 to 0.94 20.99 elling from 9.84 19.84 m (see Tab 0.58 0.39 T2 (follow s 9.82 19.84 g) = fLA × T 0.07 20.09 re from Tab 0.07 20.09 at step 11 of	A 0.9 7 in 7 20. Table 9 19. 1 19. 1 19. 1 19. 1 19. 1 20. 1 19. 1 A A	ug Sep 57 0.81 Table 9c) 98 20.85 9, Th2 (°C) 85 19.83 44 0.73 44 0.73 44 19.75 - fLA) × T .1 19.99 where app .1 19.99 le 9b, so the	0.96 20.44 19.8 0.94 ble 9c) 19.38 fLA = Liv 2 19.61 propriate 19.61	0.99 19.95 19.78 0.98 18.88 ing area ÷ (4 19.12 19.12	1 19.55 19.76 0.99 18.47 4) = 18.71 18.71	0.22	(86) (87) (88) (89) (90) (91)

l leaf	ul gains,	hmGm	W - (Q	4)m v (8,	4)m									
(95)m=		852.18	924.31	963.16	897.8	661.6	439.94	458.89	671.57	759.09	734.34	726.61		(95)
	thly avera						100.01	100.00	07 1.07	700.00	701.01	720.01		()
(96)m=	<u> </u>	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=	2054.46	1975.84	1774.03	1431.38	1086.51	696.23	445.13	467.24	763.38	1197.54	1625.8	1998.41		(97)
Spac	e heatin	g require	ement fo	r each n	nonth, k\	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4	1)m			
(98)m=	961.38	755.09	632.19	337.12	140.4	0	0	0	0	326.2	641.85	946.22		_
								Tota	l per year	(kWh/yeaı	r) = Sum(9	8) _{15,912} =	4740.47	(98)
Spac	e heatin	g require	ement in	kWh/m²	²/year								48.23	(99)
9a. Er	nergy rec	quiremer	nts – Indi	ividual h	eating sy	ystems i	ncluding	micro-C	CHP)					
Spac	e heatir	ng:												_
Fract	tion of sp	ace hea	at from so	econdar	y/supple	mentary	system						0	(201)
Fract	tion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fract	tion of to	tal heati	ng from	main sys	stem 1			(204) = (204)	02) x [1 –	(203)] =			1	(204)
Effici	ency of r	main spa	ace heat	ing syste	em 1								93.5	(206)
Effici	ency of	seconda	ry/suppl	ementar	y heatin	g systen	າ, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Spac	e heatin	g require	ement (c	alculate	d above))			r	r	i			
	961.38	755.09	632.19	337.12	140.4	0	0	0	0	326.2	641.85	946.22		
(211)r	$n = \{[(98)]\}$)m x (20	4)] } x 1	00 ÷ (20)6)									(211)
	1028.22	807.59	676.14	360.55	150.16	0	0	0	0	348.88	686.47	1012		_
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	5070.02	(211)
•	e heatin	•		• •	month									
	B)m x (20		· ·			<u> </u>	_	_						
(215)m:	0	0	0	0	0	0	0	0	0	0	0	0		7,
								rota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)
	heating		to# (oolo	ام اممدان	h a a \									
Outpu	215.4	189.68	198.8	177.66	173.68	154.6	147.93	163.09	163.05	184.25	195.52	210.03		
Efficie	ency of w	ater hea	ıter	<u> </u>	<u> </u>				<u> </u>		<u> </u>		87.3	(216)
(217)m:		89.84	89.71	89.37	88.7	87.3	87.3	87.3	87.3	89.32	89.73	89.9		(217)
Fuel for water heating, kWh/month														
(219)r	n = (64)	m x 100) ÷ (217)	m					1	1				
(219)m:	239.61	211.13	221.6	198.79	195.81	177.09	169.44	186.82	186.77	206.28	217.9	233.62		_
								Tota	I = Sum(2			l	2444.86	(219)
	al totals	fueluse	nd main	cyctom	1					k'	Wh/year		kWh/yea	¬
Space heating fuel used, main system 1								5070.02	_					
	heating												2444.86	
Electri	Electricity for pumps, fans and electric keep-hot													
		g pump	_									30		(230c)

boiler with a fan-assisted flue		45	(230e)
Total electricity for the above, kWh/year	sum of (230	a)(230g) =	75 (231)
Electricity for lighting			419.55 (232)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 x 0.01 =	176.44 (240)
Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 x 0.01 =	85.08 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	9.89 (249)
(if off-peak tariff, list each of (230a) to (230g) separately for lighting	arately as applicable and app	oly fuel price according to	
Additional standing charges (Table 12)			120 (251)
Appendix Q items: repeat lines (253) and (254) as	s noodod		
	7) + (250)(254) =		446.75 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
, ,	56)] ÷ [(4) + 45.0] =		1.31 (257)
SAP rating (Section 12)			81.73 (258)
12a. CO2 emissions – Individual heating system	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	1095.12 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	528.09 (264)
Space and water heating	(261) + (262) + (263) + (264) =		1623.21 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	217.75 (268)
Total CO2, kg/year	sun	n of (265)(271) =	1879.89 (272)
CO2 emissions per m ²	(27)	2) ÷ (4) =	19.13 (273)
El rating (section 14)			82 (274)
13a. Primary Energy			
13a. Primary Energy	Energy kWh/year	Primary factor	P. Energy kWh/year

Space heating (secondary)	(215) x	3.07	=	0	(263)
Energy for water heating	(219) x	1.22	=	2982.73	(264)
Space and water heating	(261) + (262) + (263) + (264	4) =		9168.15	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	=	230.25	(267)
Electricity for lighting	(232) x	0	=	1288.03	(268)
'Total Primary Energy		sum of (265)(271) =		10686.43	(272)
Primary energy kWh/m²/year		(272) ÷ (4) =		108.73	(273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 16 January 2017

Property Details: Flat 2

Dwelling type:FlatLocated in:EnglandRegion:East Pennines

Cross ventilation possible: Yes
Number of storeys: 1

Front of dwelling faces: North East

Overshading: Average or unknown

None

Thermal mass parameter: Indicative Value Medium

False

Night ventilation: Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):6 (Windows fully open)

Overheating Details

Summer ventilation heat loss coefficient: 467.03 (P1)

Transmission heat loss coefficient: 68.9

Summer heat loss coefficient: 535.97 (P2)

Overhangs:

Overhangs:

Orientation:	Ratio:	Z_overhangs:
South West (Rear)	0	1
North West (Side)	0	1
North West (Side)	0	1
South East (Side)	0	1
North East (Front)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South West (Rear)	1	0.9	1	0.9	(P8)
North West (Side)	1	0.9	1	0.9	(P8)
North West (Side)	1	0.9	1	0.9	(P8)
South East (Side)	1	0.9	1	0.9	(P8)
North East (Front)	1	0.9	1	0.9	(P8)

Solar gains:

Orientation		Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
South West (Rear)	0.9 x	6.55	113.91	0.76	0.7	0.9	321.51
North West (Side)	0.9 x	1	91.1	0.76	0.7	0.9	39.26
North West (Side)	0.9 x	1.1	91.1	0.76	0.7	0.9	43.18
South East (Side)	0.9 x	0.55	113.91	0.76	0.7	0.9	27
North East (Front)	0.9 x	5.95	91.1	0.76	0.7	0.9	233.58
						Total	664.53 (P3/P4)

Internal gains:

	June	July	August
Internal gains	495.14	474.82	484.3
Total summer gains	1194.44	1139.35	1055.62 (P5)
Summer gain/loss ratio	2.23	2.13	1.97 (P6)
Mean summer external temperature (East Pennines)	14.6	16.6	16.4

SAP 2012 Overheating Assessment

Thermal mass temperature increment 0.25 0.25

Threshold temperature 17.08 18.98 18.62 (P7)

Likelihood of high internal temperature Not significant Not significant

Assessment of likelihood of high internal temperature: Not significant